
CHAPTER 10

Incentive theory with data compression

Jerry R. Green and Jean-Jacques Laffont

I Introduction

The economics of information and of incentives has been one of the most
active areas of research in economic theory over the past fifteen years.
The origin of this work can be traced to the writings of Marschak in the
19205and, beyond that, to von Hayek and other European authors. Dur-
ing the development of this theory, the nature of the problems studied
has steadily evolved. The kinds of informational difficulties in complex
organizations that captured the attention of early writers were actually
far different from the questions to which modern economic theory has
provided interesting answers.
A brief digression on the nature of this evolution will help to define

our interests more clearly. In the earliest papers, the issue was the design
and evaluation of communication processes. The economy was depicted
as continually changing. A good system of communication was one that
could quickly and accurately disseminate information about its current
state. Writers such as von Hayek (1945) wanted to evaluate the price sys-
tem in this informational role. Emphasis was primarily on the eontinued
flow of new information, and on the transitory character of the state of
the economy.

The sort of knowledge with which I have been concerned is knowledge
of the kind which by its nature cannot enter into statistics and there-
fore cannot be conveyed to any central authority in statistical form.
(von Hayek, 1945, p. 524)
... an essential part of the phenomena with which we have to deal: the
unavoidable imperfection of man's knowledge and the consequent need
of a process by which knowledge is constantly communicated and ac-
quired. (von Hayek, 1945, p. 530)
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The next stage in the economics of information centered on compar-
ing communication networks. This led naturally to the theory of teams,
a subject that was almost twenty years in gestation until the publication
of the path-breaking work by Marschak and Radner (1972).' The theory
of teams dropped the concepts of information flow about a continually
changing state in favor of a more static view, with the exception of Chap-
ter 7 in Marschak and Radner (1972). The state of the system was lixed,
and team members each possessed different information about it. This
was in the tradition of statistical decision theory, where one regards the
parameters of a distribution as unknown, and seeks optimal responses to
the available information. Marschak and Radner introduced the concept
of a team decision rule. One cau say that team theory is multiplayer sta-
tistical decision theory. They tried to study the question of optimal com-
munication structure within the team. However, it is fair to say that most
of their results concern the characterization of the optimal decision rule
for a fixed communication structure, rather than this comparison.
The linal stage, within the last ten years, involved the explicit intro-

duction of differences in objectives among the agents. Communication
problems of a technological nature were largely ignored. Instead, most
attention was directed at the problem of providing the incentives neces-
sary to make the self-interested agents divulge their information. The idea
of a communication network was no longer pursued.
One reason for the rapid acceleration of this type of economic theory

is the wide applicability it has found in other areas of economics. Prob-
lems of optimal taxation, sorting and screening, adverse selection in in-
surance, employment contracting, the theory of auctions, among others,
have all been shown to be special eases of the general information trans-
mission problem.
To recapitulate this development, we have seen that the ideas of in-

formation as a flow and of communication as a complex network design
problem have been replaced by a statie view of the state of the system and
a costless technology for information transmission. This chapter reintro-
duces the idea of information as a flow to study the interaction of com-
munication constraints and incentives questions.
Section II describes informally the type of principal-agent problem on

which we focus. Section III shows how information theory is used to for-
malize the problem. The solution to the principal-agent problem is given
in Section IV. Section V compares the results to those that would be ob-
tained by a social planner.
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II A principal-agent problem with information flows

We consider a two-member organization consisting of a principal and an
agent. The agent observes a sequence of realizations of a random pro-
cess, x" and attempts to control a sequence of decisions, Y{' The actual
decisions are taken by an obedient subordinate of the agent. The problem
is that the agent cannot communicate perfectly with the subordinate be-
cause the channel through which this communication is to flow cannot
accommodate all the information about x,, The details of the communi-
cation technology will be discussed below. The agent and subordinate use
the communication technology as effectively as possible, so as to optimize
a common objective: minimizing an expected loss function that depends
on x, and Y,. This objective differs from that of the principal. The prin-
cipal's only role in this model is to provide and pay for the communica-
tion technology for the agent and subordinate. The principal knows that,
whatever technology is provided, the agent and subordinate will usc it to
their best advantage and that this may be different from the principal's.

This chapter studies how the resources devoted by the principal to the
communication technology depend on the difference in the objectives and
on the characteristics of the source x.. We compare the amount of re-
sources devoted to communication in this system with those that would
be used by a principal who could observe x, and who could communicate
directly to the subordinate. We also compare it to the optimal system, as
it would be designed by a social planner to maximize the joint welfare of
the principal and the agent, subject to the fact that the agent will observe
x{ and will control the use of this communication channel.

The novel feature of this system is the way in which the agent's envi-
ronment is modeled, particularly the dynamic aspects of his receipt and
transmission of information. As this is quite distinct from the usual prin-
cipal-agent framework, we will now describe it in some detail.

Imagine that the observations x, are realizations of independent iden-
tically distributed random variables taking one of M possible values, and
that these realizations are perceived by the agent at the rate of So per unit
time. For example, x, could be the rate of new orders placed at different
locations in a distribution system for some manufactured product. Each
order consists of a quantity and a place of delivery. Both components ar-
rive at random and are expressed in the message x"~

The agent has to transmit information about x, to a SUbordinate. This
is modeled by the agent's ability to send a sequence of pieces of inforrna-
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tion z, to the subordinate. The frequency with which this information z,
can be transmitted may be different from the rate at which the random
inputs XI arrive. It is for this reason that we denote the times at which the
inputs arrive by t and the time at which messages are sent by T. For ex-
ample, if inputs arrive each day, but messages can be sent each hour, t =
I, 2, ... , but T = 2~, 2~, .... Typically, we imagine that messages are sent
at a rate, 51 per unit time, substantially higher than So' but that each z ,
lies in a set with L distinct points, where L is much smaller than M. For
example, the transmission might be in Morse code or certain abbrevia-
tions and approximations might be used. These qualitative relations are
not relevant to the nature of our results. The important point is that the
information system may not be able to fully and accurately transmit all
the inputs. Information theory gives us one way to model this inability
precisely.

The agent's subordinate, having received the sequence z, decodes it as
well as possible. The subordinate would, ideally, reconstruct XI and act
upon it. However, unless 51 is large enough, z, will not contain enough
information to reconstruct XI perfectly. Agent and subordinates have the
ability to arrange any system of encoding and decoding they desire, Let
the best reconstruction of XI be denoted YI' The result is that the subordi-
nate will act according to YI'

We now describe the optimal encoding and decoding further, pursuing
the example of orders for delivery of a manufactured product described
above. Suppose that the communication technology allows the place of
the order to be reconstructed with perfect accuracy, but that the level of
the order can only be reconstructed to within 1,000 units. Any more ac-
curate reconstruction of orders would require more transmissions of ZT

per unit time than the channel could handle. Were the agent and subordi-
nate to attempt this with the current channel, it would take too much time
and unfilled orders would pile up without bound. We assume that a fixed
delay between XI and YI' due to the time taken in the encoding, transmis-
sion, and decoding process, can be tolerated without loss. But orders must
be processed at the same rate as they arrive.

The essential difference between this model and the usual principal-
agent models can now be described. The most important difference is the
idea that the information received by the agent is arriving as a flow over
time. It is this idea that allows us to treat the communication technology
available to the agent as a continuous variable - the rate per unit time at
which messages can be sent.

In the usual principal-agent model, the agent receives some informa-
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tion and is allowed to act on it at will, perhaps subject to a limitation on
the set of possible actions. In this static context, the literature on the prin-
cipal-agent problem has modeled the difficulties encountered by the agent
in actually implementing his desired choice by employing a dimension
counting approach. The random variable x, lies in a space of fixed dimen-
sion, the agent's action is constrained to span a space of lower dimension,
but the selection of this action is still in the hands of the agent. 2 Such an
approach is technically very messy, and its "integer" nature makes it hard
to study by analytical means the principal's choice of a space to provide
for the agent. In environments where enough informational resources exist
to achieve a fully efficient economic allocation, Mount and Reiter (1974)
and Reichelstein (1983) have characterized the minimum dimensionality
of the space in which messages must be allowed to vary. At present, a
"second-best" approach to these problems along "dimensionality" lines-
that is, asking how many dimensions are necessary to achieve a given,
suboptimal, efficiency criterion - has not been attempted. This chapter
addresses such second-best issues by modeling informational resources as
the continuous variable speed of transmission available between the agent
and subordinate, instead of the integer-valued dimensionality measure.

III Detailed model of agent's behavior and information theory

The precise model of the agent's behavior that we will use below needs
some justification and explanation. In the process of offering it, we will
explain some related ideas in information theory.

As described above, the agent receives x, and can transmit z, The way
in which x, should be coded into z, depends on the statistical distribu-
tion of x, and on the ratio of the speed of input arrival to the speed of
the transmission. For example, in English, certain letters such as q and X

are very rare relative to e and s. Therefore their Morse code symbols are
longer strings of dots and dashes - four such symbols instead of one or
two. If the letters in English were arriving at the rate of one per second,
and were encoded in Morse code, we would need to send about 2.4 Morse
code symbols per second to transmit at the required rate. If S,/So were
below 2.4, we would either have to tolerate some mistakes or we would
have to find a more efficient code. Mistakes might be, for instance, that
certain rarely used letters could be assigned the same code. Thus, q and X

might not be distinguishable upon decoding. Hopefully this would not
cause too much of a loss.

One of the main ideas of information theory has been to find the most
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efficient method for encoding. It has asked whether, for a given transmis-
sion speed, some code can be found that will allow for error-free decod-
ing. The solution to this problem is to code long strings of letters into
long "code words." For example, instead of coding each letter in English
into a Morse code sequence of from one to four letters, longer sequences
of input letters, say ten at a time, might be encoded into longer strings of
dots and dashes, say strings of ten to twenty such symbols. Such codes
are called block codes.

One of the most powerful results of information theory' concerns the
maximal amount of compression that can be achieved as more and more
complex block codes are allowed. For any, > 0, perfect encoding, trans-
mission, and decoding of a stationary source. Xl sending So characters
of the source per second, is possible using a language with L symbols,
if the speed of transmission of z, is SoH + E where H is the entropy of
the source (log base L) and if a sufficiently long block-code is used. Con-
versely, if S, < SoH, then some error must be tolerated no matter how
complex the code.

The relationship between the average error and the transmission rate
depends of course on the loss function that is used to measure the error.
For any loss function we define the rate distortion function as the infi-
mum of the transmission rate S, of channels that can be used, together
with some block code, so as to achieve the indicated average loss. This
average loss is called the distortion D and the rate distortion function is
written R(D).

This is the model of the agent's information transmission problem that
we use below. The principal gives the agent a channel with transmission
speed S,. The agent and subordinate arrange to use this channel in the
most effective manner possible.

Let us look further into the nature of the decisions that the agent and
subordinate can achieve in this way. Suppose, as much of information
theory does, that the loss associated with each XI depends only on the as-
sociated Yr In our example with orders arriving at random, we would
be assuming that a mistake in filling the order XI engenders a loss for the
agent if YI "XI' The magnitude of the loss depends on the nature of x,
and Y,. But any other YI, is irrelevant to this loss. For instance, if XI repre-
sents an order for 5,000 units in New York, and YI is "send 4,000 units to
Topeka," there is a loss. And if YI' (t'> t) is "send 3,000 units to New
York," that does not mitigate the loss incurred by the mistake already in-
curred at t. In information theory such loss functions are called single-
letterfidelity criteria.
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Suppose a particular value of XI is received. What will be the magni-
tude of the loss conditional on this event? After encoding, transmission,
and decoding, there will be a value of YI• But the YI that results from XI

depends on the code word, which will typically be very long, in which XI

is imbedded. Different occurrences of the same realization of XI will often
be decoded differently, when a complex code is used. Therefore, the opti-
mal code induces a transition probability q(YI IXI) which is not degener-
ate. For expected loss computations, it is this transition probability and
the process XI that arc relevant.
The main result of information theory cited above can be reinterpreted

in terms of the realized transition probabilities q(Yllxl). A transition
probability q( ·1·) is attainable by an information system (a block code
and a channel with a given transmission rate) if and only if the average
mutual information of YI and x., l(y,x), is less than this transmission
rate. The average mutual information is defined as

l(y,x) = L L p(x)q(y [x) log q~;;) dxdy;

where p(x) and q(y) arc the marginal distributions of X and y, X and Y
being the range of x and y.

Therefore, neglecting the approximation involved in the need to usc
arbitrarily long block codes to achieve the transmission rate, we can look
upon the agent's decision problem as the minimization of the expected
value of the loss function w(x, y) by choosing a family of conditional dis-
tributions q(·1 x) such that the average mutual information of x and y
is below the transmission rate of the channel. This is a convex program-
ming problem, whose solution can be found by means of constrained op-
timization methods.

It is important to realize that the randomness in YI given XI is not a
"bad" thing. One can, with simpler codes, make Y, nonstochastic given
XI' In doing so, however, the problem is that many XI will generally be
coded as the same YI and the average loss will be higher. Random YI arc a
necessary by-product of block codes. And block codes arc the key method
through which limited channels achieve their best performance. Thus,
when we optimize over q(·1y), we are implicitly incorporating the choice
of a good code into the agent's design problem. We do not have to con-
struct the code explicitly; indeed, the construction of such codes is itself
a highly complex numerical problem. Its existence is guaranteed by the
results of information theory cited above.

Any finite-length code that would transform blocks of XI into a finite
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set of possible z, would therefore generate only a discrete set of decoded
Yr' However, as we consider longer and longer code words, with an op-
timal encoding procedure, the regenerated Y, converge to a continuous
distribution. Thus, since we have already accepted this limiting opera-
tion when we take the constraint l(x,y) "!5R, it does not represent any
new assumption to treat the transitions q(. I .) as a family of continuous
distributions.

The principal knows the agent's preferences and therefore can com-
pute conditional distributions qR(·1 Y,) that the agent would choose if
given a channel with transmission rate R. The principal can choose Rand
must pay for its cost of installation (and maintenance). For simplicity,
we assume that this cost is linear in the transmission rate. Therefore, the
principal's problem is

max L L u(X,y)qR(YI[X,)p(x) dydy-cR,

where the expectation is taken over (x, y) with the exogenous process
x and with y distributed according to the agent's chosen transition rule
qR('[') as described above.

In order to have a tractable form of this problem, we need a stationary
process x, and a single-letter fidelity criterion w(yl' x,) for the agent such
that the resulting qR(' Ix,) takes a sufficiently simple form. 4 Although the
basic properties of R(D) hold for very general processes and fidelity cri-
teria, the resulting qR('[X,) usually cannot be computed in closed form.
This makes evaluation and optimization by the principal impossible to
carry out analytically.

The only case in which q(. [x,) takes a simple form is where x, is Gauss-
ian and w(x"y,) is quadratic. This is the model of the agent that we study
below. For the principal, we assume that u(xI'Y') = -(y,-ax,)'.

The use of a continuous input and a continuous output requires a little
comment because the discussion above was specifically directed to the
case of a discrete set of inputs, strings of which could be encoded into
strings of code letters. When the input is continuous, any encoding into a
discrete set of code letters necessitates some error. An infinite transrnis-
sion sequence would be necessary to send even one number with perfect
accuracy. Nevertheless, the concept of a rate distortion function and the
relationship of this function to the mutual information of X and y is still
valid. The only qualification is that it must be possible to define a parti-
tion of the values of X into a family of sets with the cardinality of the code
letters such that the average distortion within each element of the parti-
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tion is finite. For the case of x normally distributed and the squared error
fidelity criterion, this qualification is clearly satisfied (see Gallager 1968,
Section 9.6, pp. 470-5).

IV The solution to the principal-agent problem

We assume that the stationary source x is Gaussian with mean 0 and vari-
ance 0', and we denote its density by p(x). The agent maximizes expected
utility under the given channel constraint by solving

max - L L (y _X)2 p(x) q(y Ix) dx dy subject to

r r p(x)q(Ylx)log q(Ylx) dx dy zsR,
JrJx q(y)

From Gallager (1968) we know that the value of the agent's program at
optimum is

(I)

(2)
Moreover, this value is achieved by choosing a message y that has a

conditional distribution

q'(y [x) - ~(px, po'e-2R), (3)

where

(4)

The optimal distortion has the appearance of a contraction toward the
origin and the addition of a Gaussian noise with variance pu2e-2R•

The principal has a different objective function

Up = - L L (y-ax)'p(x)q(y Ix) dxdy-cR, (5)

where the cost of the channel R is supposed to be cR. The principal knows
that the agent is maximizing his own objective leading to equations (3)
and (4). Therefore, he looks for the best channel capacity R by maximiz-
ing equation (5) subject to equations (3) and (4).

Substituting equations (3) and (4) into (5) we rewrite the optimization
program:

max - [e-2R(2a-l)+ (a-l)2Jo'-cR.
R~O

(6)



248 Jerry R. Green and Jean-Jacques Laffont

A straightforward solution to this problem is characterized by the follow-
ing relations. If a s: -l- +c/4a', the optimal channel capacity isR' = 0; the
utility level of the principal is then up= -a2a' and the utility levelof the
agent is u~= _a2• If a > ± +c/4a2

, then

I I 2(2a-I)a'
R'=- og2 c

C( 2(2a-l)a')up= -(a-l)'a'+- 1+Iog ,
2 c

and
c 'u* - - ---'---

A- 2(2a-l)
2a.

Note that if c = 0, the principal either provides a channel of capacity
that leads the agent to choose a constant action x = 0 (which is also the
principal's best decision without any information) or provides an infinite
channel to let the agent achieve his first best.

If there were no incentives problem, the principal could achieve

max _r r (y-ax)2p(x)q(Ylx)dxdy-cR
R~O,q('I') J y Jx

. I I q(y I x)subject to p(x)q(y Ix) log dx dy s:R,y x q(y)
(7)

which yields

q"(y [x) - m:(pax,pa'a'e-'R);

p=l_e-2R;

(8)

(9)

R"= {tIOg(2a'a2/C) if 2a2(J2 ~ c,
if 2a2a2 < c;

(10)

(II)

The additional loss suffered by the principal due to the presence of an
agent whose objective function differs from his own is plotted in Figure1.
Given a cost function for the communication technology, the lossdue

to incentives increases monotonically with the amount of information
to be transmitted. This result can be contrasted with results obtained in
Green and Laffont (1982), where the loss due to incentives was not mono-
tonic in the amount of information to be transmitted.
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incentive
effect, L

V Social planning

A utilitarian social planner whose objective incorporated both the agent
and principal and who could fully control the agent's behavior would
solve

max [ [ [(y-ax)'+(y-x)']p(x)q(y [x) dxdy-cR (12)
q(-I-),R JrJx

such that

[ [ p(x)q(ylx)log q(ylx) dx dy s R,JyJx q(y)

Note that

(y-ax)' + (y -x)' = 2[y - t(a+ 1)x]' + tx'(a-I)',

Using the change of variable, v=t(a+l)x, the problem becomes

max -2[ [ (y-v)'p(v)q(ylv)dvdy-t(a-I)'a'-cR (13)
q(,I.l,R JyJx
such that

[ [ p(v)q(Ylv)log q(ylv) do dy-s R,
Jy Jx q(y)

where p(v) is the density function of v, that is, Gaussian with mean 0 and
variance [t(a+I)]'a',
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From Gallager (1968) we know that the optimal solution with respect
to q(. I·) is

q'(y 1 v) - ffi:(pv, p[·l(a+ I)f,,'e-'R), (14)

p=l_e-'R, (15)

and that the value of h Ix (y- v)'p(v)q(y 1v) dv dy is

[t (a+ I)]' ,,'e -'R.
The optimization reduces to

min - {[t(a+ I )]',,'e-2R -t(a-I)',,' -cRj,
R

(16)

(17)

yielding

R" = { ~ log [(a + I)',,'/c]

and a social welfare

if (a+ I)',,';" c,
if (a+I)',,'<c;

(18)

.. _ {-±(a-I )',,' - f(l + log[(a+ I )',,'/c])
U - I 2 2-,(a-I) a

if (a+ I)',,';" c,
if (a+ 1)',,2 <C.

(19)

Consider now what this social planner can achieve under the further
constraint that the agent cannot be fully controlled, but rather that the
agent will use the available channel to his own best advantage.

From Section IV we know that the agent ehooses according to equa-
tions (3) and (4). The planner's objective function is then

-2a,,'e-'R - [t (a_I)]',,' -cR, (20)

yielding

R'= { ~log(4a,,'/c)

and a social welfare

if 4a(12 ~ c,
if 4a,,' < c;

(21)

, _ {-±(a-I)'", - f[l + log(4a,,'/c)]
u - 1 2 2-,(a-I) a

if 40(12 ~ c,
if 4a,,' < c.

(22)

The additional social loss due to incentive problems is

{
f log[(a+ 1)'/4a] if "';,, c/Aa,

L = f log[(a+ I)',,'/c] if c/(a+ I)'< ,,' < c/4a,
o if ,,',;c/(a+I)'.

(23)
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o c
(c"02

Figure 2

R

2 a

Figure 3

Here again the additional loss due to incentives is increasing mono-
tonically in the information to be transmitted (see Figure 2).

We show in Figure 3 the optimal channel capacity or optimal expen-
ditures on communication incurred in the various cases studied in this
chapter:

Rp Principal-agent problem without incentives constraints
Rpi Principal-agent problem with incentives constraints
Rs Social planner problem without incentives constraints
RS1 Social planner problem with incentives constraints
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Figure 3 is constructed under the assumption that cju 2 < 2. It is natur-
al to focus on this case because in the opposite case the cost of the chan-
nel is so high that the principal would not like to use the channel even if
the agent shared his objective function.

We observe the following results:

1. In both the principal-agent problem and the social planning prob-
lem, incentives constraints lead to a reduction in communication
expenditures.

2. Under incentives constraints, expenditures in the principal-agent
problem are always smaller than in the social planner's problem.
Without ineentives constraints this relationship continues to hold
unless a becomes very large.

NOTES

However, Marschak (1971) attempted to bridge economics and information
theory.

2 In Green and Laffont (1982), we study this interaction when communication
constraints are expressed as constraints on the dimensionality of the Euclidean
spaces used by economic units to communicate their messages. See also Green
(1982), Reichelstein (1983).

3 This theory was developed by Shannon (1948,1959). Berger (1971)provides the
most comprehensive treatment.

4 An algorithm due to Blahut (1972) could be used to solve these problems nu-
merically.
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